Part Number Hot Search : 
2SD1499 SB260S LCD20 MBI20 2PTBG 113GP STA524A FDMS7694
Product Description
Full Text Search
 

To Download TS925 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
TS925
RAIL TO RAIL HIGH OUTPUT CURRENT QUAD OPERATIONAL AMPLIFIER
. . . . . . . . . . . .
RAIL TO RAIL INPUT AND OUTPUT LOW NOISE : 9nV/Hz LOW DISTORTION HIGH OUTPUT CURRENT : 80mA (able to drive 32 loads) HIGH SPEED : 4MHz, 1.3V/s OPERATING FROM 2.7V TO 12V LOW INPUT OFFSET VOLTAGE : 900V max. (TS925A) ADJUSTABLE PHANTOM GROUND (VCC/2) STANDBY MODE
N DIP16 (Plastic Package)
D SO16 (Plastic Micropackage)
ESD INTERNAL PROTECTION : 2kV LATCH-UP IMMUNITY MACROMODEL INCLUDED IN THIS SPECIFICATION
P TSSOP16 (Thin Shrink Small Outline Package)
DESCRIPTION The TS925 is a RAIL TO RAIL quad BiCMOS operational amplifier optimized and fully specified for 3V and 5V operation. High output current allows low load impedances to be driven. An internal low impedance PHANTOM GROUND eliminates the need for an external reference voltage or biasing arrangement. The TS925 exhibits a very low noise, low distortion and high output current making this device an excellent choice for high quality, low voltage or battery operated audio/telecom systems. The device is stable for capacitive loads up to 500pF. When the STANDBY mode is enabled, the total consumption drops to 6A (VCC = 3V). APPLICATIONS Headphone amplifier Soundcard amplifier, piezoelectric speaker MPEG boards, multimedia systems, ... Cordless telephones and portable communication equipment Line driver, buffer Instrumentation with low noise as key factor
ORDER CODES
Part Number TS925I Temperature Range -40, +125 C
o
Package N * D * P *
PIN CONNECTIONS
O utput 1
Inve rting Inp ut 1 Non-inve rting Inp ut 1
V
CC
1 2
16
O utput 4
Inve rting Inp u t 4 Non -inverting Inp u t 4
V
CC
15
3 4
5
+
+
14
Inve rting Inp ut 2
6
O utput 2 P hantom ground
7
8
March 1999
-
+
+
-
. . . . . .
+
13
-
Non-inve rting Inp ut 2
12
Non -inverting Inp u t 3 Inve rting Inp u t 3
11
10
O utput 3
S tdby
9
1/16
TS925
ABSOLUTE MAXIMUM RATINGS
Symbol VCC Vid Vi Toper Tj Rthja
Notes : 1. 2. 3. 4.
Parameter Supply Voltage - (note 1) Differential Input Voltage - (note 2) Input Voltage - (note 3) Operating Free Air Temperature Range Maximum Junction Temperation Thermal Resistance Junction to Ambient Output Short-Circuit Duration
Value 14 1 -0.3 to 14 -40 to +125 150 130 see note 4
Unit V V V o C o C o C/W
All voltage values, except differential voltage are with respect to network ground terminal. Differential voltages are the non-inverting input terminal with respect to the inverting input t erminal. The magnitude of input and output voltages must never exceed VCC+ +0.3V. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all amplifiers. Do not short circuit outputs to VCC+ when exceeding 8V : this can induce reliability defects.
OPERATING CONDITIONS
Symbol VCC Vicm Parameter Supply Voltage Common Mode Input Voltage Range Value 2.7 to 12 -0.2 to VCC +0.2 Unit V V
VCC
2/16
TS925
ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, T amb = 25oC (unless otherwise specified) OPERATIONAL AMPLIFIER
Symbol Vio Parameter Input OffsetVoltage Tmin. < Tamb. < Tmax. DVio Iio Iib VOH Input Offset Voltage Drift Input Offset Current Input Bias Current High Level Output Voltage RL connected to VCC/2 Low Level Output Voltage RL connected to VCC/2 Large Signal Voltage Gain Vout = 1.5V Vout = 1.5V R L = 10k R L = 600 RL = 32 R L = 10k R L = 600 RL = 32 Vout = 2Vpk-pk R L = 10k R L = 600 RL = 32 R L = 600 60 VCC = 2.7V to 3.3V 60 50 0.7 R L = 600, CL = 100pF R L = 600, CL = 100pF f = 1KHz Vout = 2Vpk-pk, f = 1kHz AV = 1 R L = 600 2.90 2.87 2.63 50 100 180 V/mV 200 35 16 4 80 85 80 1.3 68 12 9 MHz dB dB mA V/s Degrees dB nV Hz % 0.01 120 dB mV Test Condition TS925 TS925A TS925 TS925A 2 1 15 30 100 Min. Typ. Max. 3 0.9 5 1.8 Unit mV
V/oC nA nA V
VOL
Avd
GBP CMR SVR Io SR Pm GM en THD
Gain Bandwidth Product Common Mode Rejection Ratio Supply Voltage RejectionRatio Output Short-circuit Current Slew Rate Phase Margin at Unit Gain Gain Margin Equivalent Input Noise Voltage Total Harmonic Distortion
Cs
Channel Separation
3/16
TS925
GLOBAL CIRCUIT
Symbol ICC Istby Venstby Vdistby Parameter Total Supply Current Total Supply Current in STANDBY (pin 9 connected to VCC ) Pin 9 Voltage to enable the STANDBY mode - (note 1) Pin 9 Voltage to disable the STANDBY mode - (note 1) Tmin. Tamb Tmax. Tmin. Tamb Tmax. 1.1 1 Test Condition No load, Vout = VCC/2 Min. Typ. 5 6 0.3 0.4 Max. 7 Unit mA A V V
Note 1 : the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN.
PHANTOM GROUND
Symbol Vpg Ipgsc Zpg Enpg Parameter Phantom Ground Output Voltage Phantom Ground Output Short Circuit Current (sourced) Phantom Ground Impedance Phantom Ground Output Voltage Noise (f = 1kHz) DC to 20kHz Cdec = 100pF Cdec = 1nF Cdec = 10nF (note 2) 12 Test Condition No Output Current Min. VCC/2 -5% 12 Typ. VCC/2 18 3 200 40 17 18 Max. VCC/2 +5% Unit V mA
nV Hz
Ipgsk
Phantom Ground Output Short Circuit Current (sinked)
mA
Note 2 : Cdec is the decoupling capacitor on Pin 9.
4/16
TS925
ELECTRICAL CHARACTERISTICS VCC+ = 5V, VCC- = 0V, T amb = 25oC (unless otherwise specified) OPERATIONAL AMPLIFIER
Symbol Vio Parameter Input OffsetVoltage Tmin. < Tamb. < Tmax. DVio Iio Iib VOH Input Offset Voltage Drift Input Offset Current Input Bias Current High Level Output Voltage RL connected to VCC/2 Low Level Output Voltage RL connected to VCC/2 Large Signal Voltage Gain Vout = 2.5V Vout = 2.5V R L = 10k R L = 600 RL = 32 R L = 10k R L = 600 RL = 32 Vout = 4Vpk-pk R L = 10k R L = 600 Vout = 2Vpk-pk, RL = 32 R L = 600 60 VCC = 3V to 5V 60 50 0.7 RL = 600, CL = 100pF RL = 600, CL = 100pF f = 1KHz Vout = 3Vpk-pk, f= 1kHz AV = 1 R L = 600 4.9 4.85 4.4 50 120 300 V/mV 200 40 17 4 80 85 80 1.3 68 12 9 0.01 120 dB MHz dB dB mA V/s Degrees dB nV Hz % mV Test Condition TS925 TS925A TS925 TS925A 2 1 15 30 100 Min. Typ. Max. 3 0.9 5 1.8 Unit mV
V/oC nA nA V
VOL
Avd
GBP CMR SVR Io SR Pm GM en THD
Gain Bandwidth Product Common Mode Rejection Ratio Supply Voltage RejectionRatio Output Short-circuit Current Slew Rate Phase Margin at Unit Gain Gain Margin Equivalent Input Noise Voltage Total Harmonic Distortion
Cs
Channel Separation
5/16
TS925
GLOBAL CIRCUIT
Symbol ICC Istby Venstby Vdistby Parameter Total Supply Current Total Supply Current in STANDBY (pin 9 connected to VCC ) Pin 9 Voltage to enable the STANDBY mode - (note 1) Pin 9 Voltage to disable the STANDBY mode - (note 1) Tmin. Tamb Tmax. Tmin. Tamb Tmax. 1.1 1 Test Condition No load, Vout = VCC/2 Min. Typ. 6 10 0.3 0.4 Max. 8 Unit mA A V V
Note 1 : the STANDBY mode is currently enabled when Pin 9 is GROUNDED and disabled when Pin 9 is left OPEN.
PHANTOM GROUND
Symbol Vpg Ipgsc Zpg Enpg Parameter Phantom Ground Output Voltage Phantom Ground Output Short Circuit Current (sourced) Phantom Ground Impedance Phantom Ground Output Voltage Noise (f = 1kHz) DC to 20kHz Cdec = 100pF Cdec = 1nF Cdec = 10nF (note 2) 12 Test Condition No Output Current Min. VCC/2 -5% 12 Typ. VCC/2 18 3 200 40 17 18 Max. VCC/2 +5% Unit V mA
nV Hz
Ipgsk
Phantom Ground Output Short Circuit Current (sinked)
mA
Note 2 : Cdec is the decoupling capacitor on Pin 9.
6/16
TS925
INPUT OFFSET VOLTAGE DISTRIBUTION TOTAL SUPPLY CURRENT vs SUPPLY VOLTAGE WITH NO LOAD
5.5
783 devices from 3 lots - Vcc=0/3V - T=25C
SUPPLY CURRENT (mA) -0.55 -0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 .25 .35 .45 .55 110 100 90 80 70 60 50 40 30 20 10 0 1.1 4.4
3.3
2.2
Vio (mV): average on 4 operators per device
0 6 SUP PLY VOLTAGE (V) 12
SUPPLY CURRENT/AMPLIFIER vs TEMPERATURE
1.4
OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE
100 80
SUPPLY CURRENT PER AMPLIFIER (mA)
1.3
VCC = 0/5V
OUTPUT SHORT-CIRCUIT CURRENT (mA)
60 40 20 0 -20 -40 -60 -80 -100 VCC = 0/12V Ta mb. = 25 C S ink
1.2
1.1
1
S ource 0 6 OUTP UT VOLTAGE (V) 12
0.9
-55
25 AMBIENT TEMPERATURE ( C)
125
OUTPUT SHORT CIRCUIT CURRENT vs OUTPUT VOLTAGE
100 80 OUTPUT SHORT-CIRCUIT CURRENT (mA) S ink
OUTPUT SHORT CIRCUIT CURRENTvs OUTPUT VOLTAGE
100 80 OUTPUT SHORT-CIRCUIT CURRENT (mA) 60 40 20 0 -2 0 -40 -60 -80 -100 VCC = 0/3V Ta mb. = 25 C S ink
60 40 20 0 -20 -40 -60 -80 -100 0 1 VCC = 0/5V Ta mb. = 25 C
S ource 2 3 4 OUTP UT VOLTAGE (V) 5
S ource 0 1.5 OUTP UT VOLTAGE (V) 3
7/16
TS925
OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE
100
VOLTAGE GAIN AND PHASE vs FREQUENCY
0
40
VCC= 0/5V
30 OPEN LOOP VOLTAGE GAIN (dB) 20 10 0 -10 -20 -30 -40 -50 VCC = 1.5 V C L = 500pF Ta mb. = 25 C 100k 1M FREQUENCY (Hz) 10M 270 180 Ga in Pha se 90
90 OUTPUT SHORT-CIRCUIT CURRENT (mA)
S ink
80 S ource 70
60
50 -55 25 AMBIENT TEMPERATURE ( C) 125
DISTORSION + NOISE vs FREQUENCY
0.03 R L = 2k Vo = 10Vpp VCC = 0/12V G = -1
THD + NOISE vs FREQUENCY
0.02 R L = 2k Vo = 10Vpp VCC = 0/12V Ga in = 1
0.025
0.015 THD + NOISE (%)
THD + NOISE (%)
0.02
0.015
0.01
0.01
0.005 0.005 0 0 0.01 0.03 0.1 0.3 1 3 10 30 0.01 0.03 0.1 0.3 1 3 10 30 FREQUENCY (kHz) FREQUENCY (kHz)
THD + NOISE vs FREQUENCY
0.0 4 R L = 32 Vo = 4Vpp VCC = 0/5V Ga in = 1
THD + NOISE vs FREQUENCY
0.7 0.6 R L = 32 Vo = 2Vpp VCC = 0/3V Ga in = 10
0.032 THD + NOISE (%)
0.024
THD + NOISE (%)
0.5 0.4
0.1 6
0.3 0.2
0.008 0.1 0 0.01 0.03 0.1 0.3 1 3 10 30 0 0 .01 0.03 0.1 0.3 1 3 10 30
FR EQUENC Y (kHz)
FREQUENCY (kHz )
8/16
TS925
EQUIVALENT INPUT NOISE vs VERSUS FREQUENCY
18 en - EQUIVALENT INPUT NOISE VOLTAGE (nv/vHz) 16 14 12 10 8 6 4 2 0 10 100 10k FREQUENCY (Hz) 1k 100k VCC = 1.5V
TOTAL SUPPLY CURRENT (mA)
TOTAL SUPPLY CURRENT vs STANDBY INPUT VOLTAGE
R S = 100 Tamb. = 25 C
5
VCC = 0/3V
4
3
2
1
0 0
0.4
0.8 V s ta ndby (V)
1.2
1.6
2
PHANTOM GROUND SHORT CIRCUIT OUTPUT CURRENT vs PHANTOM GROUND OUTPUT VOLTAGE
20 VCC = 0/12V 16 12 I pgsc (mA) 8 4 0 -4 -8 -12 -16 -20 0
6
12
9/16
TS925
APPLICATION NOTE PREAMPLIFIER AND SPEAKER DRIVER USING TS925
by F. MARICOURT
The TS925 is an input/output rail to rail quad BiCMOS operational amplifier. It is able to operate with low supply voltages (2.7V) and to drive low output loads such as 32. As an illustration of these features, the following technical note highlights many of the advantages of the device in a global audio application. APPLICATION CIRCUIT Figure 1 shows two operators (A1, A4) used in a preamplifier configuration, and the two others in a push-pull configuration driving a headset. The phantom ground is used as a common reference level (VCC/2). The power supply is delivered from two LR6 batteries (2x1.5V nominal). Figure 1 : Electrical Schematic
Preamplifier : the operators A1 and A4 are wired with a non inverting gain of respectively : * A1# (R4/(R3+R17)) * A4# R6/R5 With the following values chosen : * R4=22k - R3=50 - R17=1.2k * R6=47k - R5=1.2k, the gain of the preamplifier chain is thus 58dB. Alternatively, the gain of A1 can be adjusted by choosing a JFET transistor Q1 instead of R17. This JFET voltage controlled resistor arrangement forms an automatic level control (ALC) circuit, useful in many MIC preamplifier applications. The mean rectified peak level of the output signal envelope is used to control the preamplifier gain.
10/16
TS925
Figure 2 : Frequency Response of the Global Preamplifier Chain Headphone amplifier : the operators A2 and A3 are organized in a push-pull configuration with a gain of 5. The stereo inputs can be connected to a CD-player and the TS925 drives directly the headphone speakers.This configuration shows the ability of the circuit to drive 32 load with a maximum output swing and a high fidelity for reproducing sound and music. Figure 4 shows the available signal swing at the headset outputs : two other rail to rail competitor parts are employed in the same circuit for comparison (note the much reduced clipping level and crossover distortion) Figure 4 : Maximum Voltage Swing at Headphone Outputs (RL = 32)
70
60
Voltage Gain (dB)
50
40
30
20 100
1000
10000
100000
1000000
10000000
1.0E+08
frequency (Hz)
Figure 3 : Voltage Noise Density versus Frequency at Preamplifier Output
15 14
Noise Density (nV/sqrt(Hz))
13 12 11 10 9 8 7 10 100 1000 10000 100000
Figure 5 : THD+Noise versus Frequency (headphone outputs)
frequency (Hz)
0.4 0.35 0.3
THD+noise (%)
0.25 0.2 0.15 0.1 0.05 0 100
1000 Hz
10000
100000
11/16
TS925
MACROMODEL RAIL TO RAIL INPUT AND OUTPUT LOW NOISE : 9nVHz LOW DISTORTION
. . .
. . .
HIGH OUTPUT CURRENT : 50mA min. (able to drive 32 loads) HIGH SPEED : 4MHz, 1.3V/s OPERATING FROM 2.7V TO 12V
** Standard Linear Ics Macromodels, 1996. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY . S UBCK T T S9 2 5 1 3 2 4 5 (an a lo g ) ********************************************************* .MODEL MDTH D IS=1E-8 KF=2.664234E-16 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 8.125000E+00 RIN 15 16 8.125000E+00 RIS 11 15 2.238465E+02 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 153.5u VOFN 13 14 DC 0 IPOL 13 5 3.200000E-05 CPS 11 15 1e-9 DINN 17 13 MDTH 400E-12 VIN 17 5 -0.100000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 0.400000E+00 FCP 4 5 VOFP 1.865000E+02 FCN 5 4 VOFN 1.865000E+02 FIBP 2 5 VOFP 6.250000E-03 FIBN 5 1 VOFN 6.250000E-03 * GM1 STAGE *************** FGM1P 119 5 VOFP 1.1 FGM1N 119 5 VOFN 1.1 RAP 119 4 2.6E+06 RAN 119 5 2.6E+06 * GM2 STAGE *************** G2P 19 5 119 5 1.92E-02 G2N 19 5 119 4 1.92E-02
R2P 19 4 1E+07 R2N 19 5 1E+07 ************************** VINT1 500 0 5 GCONVP 500 501 119 4 19.38 !envoie ds VP, I(VP)=(V119-V4)/2/Ut VP 501 0 0 GCONVN 500 502 119 5 19.38 !envoie ds VN, I(VN)=(V119-V5)/2/Ut VN 502 0 0 ********* orientation isink isource ******* VINT2 503 0 5 FCOPY 503 504 VOUT 1 DCOPYP 504 505 MDTH 400E-9 VCOPYP 505 0 0 DCOPYN 506 504 MDTH 400E-9 VCOPYN 0 506 0 *************************** F2PP 19 5 poly(2) VCOPYP VP 0 0 0 0 0.5 !multiplie I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2PN 19 5 poly(2) VCOPYP VN 0 0 0 0 0.5 !multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/Ut F2NP 19 5 poly(2) VCOPYN VP 0 0 0 0 1.75 !multiplie I(vout)*I(VP)=Iout*(V119-V4)/2/Ut F2NN 19 5 poly(2) VCOPYN VN 0 0 0 0 1.75 !multiplie I(vout)*I(VN)=Iout*(V119-V5)/2/Ut * COMPENSATION ************ CC 19 119 25p * OUTPUT*********** DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.250000E+02 VIPM 28 4 5.000000E+01 HONM 21 27 VOUT 6.250000E+02 VINM 5 27 5.000000E+01 VOUT 3 23 0 ROUT 23 19 6 COUT 3 5 1.300000E-10 DOP 19 25 MDTH 400E-12 VOP 4 25 1.052 DON 24 19 MDTH 400E-12 VON 24 5 1.052 .ENDS
12/16
TS925
ELECTRICAL CHARACTERISTICS VCC+ = 3V, VCC- = 0V, RL,CL connected to VCC/2, Tamb = 25oC (unless otherwise specified)
Symbol Vio Avd ICC Vicm VOH VOL Isink Isource GBP SR m RL = 10k RL = 10k VO = 3V VO = 0V RL = 600 RL = 10k, CL = 100pF RL = 600 RL = 10k No load, per operator Conditions Value 0 200 1.2 -0.2 to 3.2 2.95 25 80 80 4 1.3 68 Unit mV V/mV mA V V mV mA mA MHz V/s Degrees
13/16
TS925
PACKAGE MECHANICAL DATA 16 PINS - PLASTIC DIP
Dimensions a1 B b b1 D E e e3 F i L Z
Min. 0.51 0.77
Millimeters Typ.
Max. 1.65
Min. 0.020 0.030
Inches Typ.
Max. 0.065
0.5 0.25 20 8.5 2.54 17.78 7.1 5.1 3.3 1.27
0.020 0.010 0.787 0.335 0.100 0.700 0.280 0.201 0.130 0.050
14/16
TS925
PACKAGE MECHANICAL DATA 16 PINS - PLASTIC MICROPACKAGE (SO)
Dimensions A a1 a2 b b1 C c1 D E e e3 F G L M
Min. 0.1 0.35 0.19
Millimeters Typ.
Max. 1.75 0.2 1.6 0.46 0.25 45o (typ.)
Min. 0.004 0.014 0.007
Inches Typ.
Max. 0.069 0.008 0.063 0.018 0.010
0.5 9.8 5.8 1.27 8.89 3.8 4.6 0.5 4.0 5.3 1.27 0.62 0.150 0.181 0.020 10 6.2 0.386 0.228
0.020 0.394 0.244 0.050 0.350 0.157 0.209 0.050 0.024
15/16
TS925
PACKAGE MECHANICAL DATA 16 PINS - THIN SHRINK SMALL OUTLINE PACKAGE
Dim. A A1 A2 b c D E E1 e k l
Millimeters Min. 0.05 0.80 0.15 0.1 4.90 4.30 0
o
Inches Max. 1.20 0.15 0.01 0.031 0.005 0.003 0.192 0.169 0
o
Typ.
Min.
Typ.
Max. 0.05 0.006
1.00
1.05 0.30 0.20
0.039
0.041 0.15 0.012
5.00 6.40 4.40 0.65
5.10 4.50 8
o
0.196 0.252 0.173 0.025
0.20 0.177 8
o
0.50
0.60
0.75
0.09
0.0236
0.030
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publ ication supersedes and replaces all infor mation previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. (c) The ST logo is a trademark of STMicroelectronics (c) 1999 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. (c) http://www.st.com
16/16


▲Up To Search▲   

 
Price & Availability of TS925

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X